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ABSTRACT: Birefringence measurement demonstrates that
the segment orientation of entangled polymers overshoots on
start-up of fast shear [Pearson et al. J. Rheol. 1989 33, 517−
535]. The stress-optical rule holds for those polymers, so that
the overshoot of orientation results in the overshoot of shear
stress. On the other hand, an opposite result was deduced
from the recent molecular dynamics simulation for bead−
spring chain [Lu et al. ACS Macro Lett. 2014 3, 569−573]: the
evolution of segment orientation does not overshoot but the
chain stretch induces the stress overshoot, even at the shear
rate γ ̇ smaller than the reciprocal Rouse time, 1/τR. In this
study, we performed the primitive chain network simulation to
find that our simulation reproduces the overshoot of both stress and orientation and the chain stretch exhibits a slight, monotonic
increase but no overshoot. Our result is thus fully consistent with the experiment.

Entangled polymers exhibit the stress overshoot on start-up
of fast shear. This overshoot has been related to the

overshoot of the segment orientation, in particular when the
flow rate γ ̇ is smaller than the reciprocal Rouse time 1/τR:

1

Pearson et al.1 performed simultaneous measurements of stress
and birefringence for entangled polyisoprene solutions under
steady shear to find that the stress-optical rule (proportionality
between the stress and birefringence) holds, even at γ ̇ > 1/τR.
They also reported the birefringence growth on start-up of
shear flow. Figure 1 shows their (Δn/2) sin 2χ data, where Δn

is the birefringence and χ is the orientation angle. (In ref 1, the
data were plotted against the shearing time t. In Figure 1, t has
been converted to the strain γ = γṫ). The Weissenberg number
defined with respect to the viscoelastic Rouse relaxation time,
WiR

[G] ≡ γτ̇R, is 0.244 and 0.48 (γ ̇ = 4 and 8 s−1). Clearly, the
(Δn/2) sin 2χ value (that corresponds to the shear stress

because of the stress-optical rule) exhibits an overshoot. Similar
overshoot of birefringence has been reported even earlier by
Zebrowski and Fuller.2

On the other hand, recently, Lu et al.3 have reported a result
contradicting to the experiment mentioned above: They
performed Brownian dynamics simulations of the standard
Kremer-Grest chains on start-up of shear at 1/τd < γ ̇ < 1/τR
(where τd is the longest relaxation time). The bead number per
chain is 500, and the system is reasonably entangled. (Lu et al.3

estimated the number of entanglements per chain as 500/Ne ≅
14, with Ne = 36 being the number of beads per entanglement
segment at equilibrium). The simulation showed the stress
overshoot as observed in experiments, and they attempted to
analyze the origin of the overshoot with respect to the chain
conformation. They divided the chain into the subchains each
containing the fixed number of beads, Ne = 36, and evaluated
the orientation and the stretch of those subchains. Figure 2
shows the subchain orientation SLu (=σxy

or/3G0 in the
terminology of Lu et al.3) on start-up of shear at WiR

[G] = 1/
12. (Lu et al.3 defined WiR with respect to the Rouse relaxation
time of chain stretch and thus their WiR value is twice of the
viscoelastic WiR

[G] utilized in this paper.) SLu shows no overshoot
and monotonically increases with increasing strain, γ, even
though the stress clearly overshoots at this shear rate, 1/τd < γ ̇
< 1/τR.

3 Because the stretch defined in their simulation shows a
clear overshoot (not shown here), Lu et al.3 argued that the
chain stretch leads to the stress overshoot. Their result,
suggesting failure of the stress-optical rule even at such small
WiR < 1, is surprising since this rule is known to be valid
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Figure 1. (Δn/2) sin 2χ as a function of applied strain γ for 10%
solution of polyisoprene (Mw = 1.67 × 106, Mw/Mn = 1.1, and Mw/Me
∼ 16.9) dissolved in oligo-isoprene (M = 410). The WiR

[G] (≡ γτ̇R)
values were 0.244 (blue curve) and 0.488 (red curve), respectively (γ ̇ =
4 and 8 s−1). The data were taken by Pearson et al.1
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regardless of the microstructure of polymers4 and the level of
coarse-graining of molecular models.5

Considering the above contradiction between the experi-
ment1 and simulation,3 we performed multichain slip-link
simulations (primitive chain network simulations6) on start-up
of shear. Our simulation results were consistent with the
experiment by Pearson et al.1 rather than the analysis by Lu et
al.3 Namely, the subchain orientation does overshoot to fulfill
the stress-optical rule at WiR

[G] < 1. Details of our results are
presented below.
We utilized the primitive chain network (PCN) model6 that

represents the polymer chain as consecutive subchains. Those
polymer chains are bundled by slip-links to form an entangled
network. Time evolution of the slip-link position obeys the
Langevin-type equation of motion that considers balance of the
drag force, subchain tension, osmotic force, and random force.
The same force balance is also considered in the time-evolution
equation for the number of Kuhn segments in each subchain to
describe the sliding motion of the chain through the slip-link.
The slip-link is created/removed at the chain ends, which
represents constraint creation/release. The simulation based on
this PCN model well reproduces the transient shear responses
of entangled DNA solutions7 and a PS melt,8 including the
stress overshoot.
In this study, we conducted the PCN simulation for the

chains, each being composed of 20 subchains (entanglement
segments) on average at equilibrium. Periodic boundary
condition was used and the shear deformation was applied
via the Lees-Edwards boundary condition and the SLLOD
algorithm. The unit cell dimension was 10 × 10 × 10 (where
the unit length is the average subchain length at equilibrium)
and the number of chains in the box was 500. Data from 8
independent simulation runs were averaged to achieve good
statistics. In this study, we did not implemented the stretch/
orientation-induced reduction of friction (SORF)8 because
SORF never occurs under flow at WiR

[G] < 1. We also omitted
the finite chain extensibility. The viscoelastic Rouse time in the
PCN simulation was specified as τR = Z0

2τ0/2π
2,9 where τ0 is the

unit time in the simulation and Z0 is the average value of the
subchain number per chain.
The simulation allowed us to evaluate the evolution of shear

stress σ, primitive path length L, and orientation S. The end-to-
end vector of i-th subchain in j-th chain, ri,j = (rx

i,j, ry
i,j, rz

i,j), and
the number of Kuhn segments in this subchain, ni,j, gave the
shear stress as σ = 3G0

PCN∑i,j(rx
i,j, ry

i,j/ni,j)/∑iZ0, where G0
PCN is

the unit of stress in the PCN model.10,11 The primitive path
length is straightforwardly obtained as L = ⟨∑i

zj|ri|⟩j, where Zj is
the subchain number in the j-th chain and ⟨···⟩j denotes the
ensemble average for all chains. The orientation is defined by S
= ⟨(Z0/Zj)(rx

i,j, ry
i,j/ri,j

2 )⟩i,j. The factor Z0/Zj in this definition

converts the orientation of the subchain containing ni,j Kuhn
segments under flow (ni,j increases with γ ̇ due to disentangle-
ment) into the orientation for a reference subchain containing a
fixed number of Kuhn segments n0 = nt/Z0, where nt is the total
number of Kuhn segments per chain and n0 is the average
number of those segments per entanglement at equilibrium.
The stress-optical rule is equivalent to the proportionality
between the orientation S defined in this way and the shear
stress, because a ratio of the optically detected segmental
orientation Sseg to S of the reference subchain is constant
irrespective of γ and γ ̇ given that all n0 Kuhn segments in this
subchain are mutually equilibrated in a focused time scale.4

(This condition is always fulfilled for the entanglement segment
in the PCN simulation.9) For comparison, we also calculated
Sent = ⟨rx

i,j ry
i,j/ri,j

2 ⟩i,j for the entanglement segments under flow
(subchains composed of ⟨ni,j⟩i,j Kuhn segments on average).
Figure 3 shows the transient behavior of the reduced shear

stress σ/G0
PCN (top panel), the orientation S (2nd panel), and

the normalized primitive path length L/L0 (3rd panel). (L0 is
the equilibrium value of L.) The normalized subchain number
per chain Z/Z0 is also shown (bottom panel). In the second
panel, Sent is also shown with the dotted curves. This Sent

becomes smaller than S of the reference subchain (solid red
curve) at large γ (long t). This difference reflects the monotonic
decay of the Z/Z0 ratio (that is associated with the increase of
L/L0). More importantly, the overshoot is clearly noted for
both σ/G0

PCN and S, but not for L/L0.

Figure 2. Subchain orientation for the bead−spring chain melt with
the bead number per chain of 500 at WiR

[G] = 1/12. The data were
reported by Lu et al.3

Figure 3. Reduced stress σ/G0
PCN, orientation S of the reference

subchain (containing a fixed number n0 of Kuhn segments irrespective
of the flow condition), normalized primitive path length L/L0, and
normalized segment number per chain Z/Z0, from top to bottom,
plotted against applied strain γ (=γṫ). The WiR

[G] values are 1/6, 1/4,
and 1/2 for black, blue, and red curves, respectively. In the second
panel, the dotted red curve shows Sent of the entanglement segments
(that enlarge on disentanglement).
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Figure 4 shows the plot of σ/G0
PCN against S of the reference

subchain at WiR
[G] = 1/6 (black symbol), 1/4 (blue), and 1/2

(red). The proportionality between σ/G0
PCN and S indicates

validity of the stress-optical rule in our simulation. Note that
the small stretch, characterized by the L/L0 ratio in Figure 3,
has no significant contribution to stress.
Figure 5 compares our results with those reported in earlier

studies;1,3,12 The viscoelastic WiR
[G] is equal to 1/4 for the

simulations and model calculation and is just slightly smaller for
the data (green dash-dot curve; WiR

[G] = 0.244). In the top panel,
the stress σ is normalized by the initial modulus Ginit. The inset
magnifies the plots for small γ ≤ 1. For sufficiently small γ
(short t), the linear viscoelastic behavior should prevail
irrespective of nonlinearity at large γ so that the normalized
σ/Ginit should coincide with γ. In fact, this linearity require-

ment, σ/Ginit = γ (black line in the inset), is satisfied for all cases
at sufficiently small γ.
Figure 5 demonstrates that our result (red solid curve) is

rather close to the stress evolution from GLaMM model12

(calculated by Lu et al.,3 shown by blue dotted curve) and the
rheo-optically measured stress data by Pearson et al.1 (green
dash-dot curve), in particular, at small γ, although the number
of entanglement per chain was not exactly accommodated for
these three cases. (The bead−spring simulation by Cao and
Likhtman13 gave similar overshoot of stress.) In contrast, the
stress simulated by Lu et al.3 (black circles) keeps the initial
linear behavior up to higher strain, γ ∼ 0.8, compared to the
other three cases. Thus, some orientational relaxation modes
appear to be suppressed in the simulation by Lu et al.,3 as also
suggested from the lack of orientation overshoot in their
simulation (Figure 2). We also note that the L/L0 ratio (Figure
5, bottom panel) obtained from our simulation and GLaMM
model12 increases monotonically with γ. This monotonic
increase results from competition between the flow-induced
stretch and the intrinsic (Rouse) relaxation of the chain stretch.
On the other hand, in the simulation by Lu et al.3 the L/L0
ratio shows an overshoot.
In relation to the above results, Lu et al. recently reported (in

another paper14) that the gyration radius Rg,y at WiR
[G] = 1/12,

defined in the shear gradient direction, is considerably smaller
than that at equilibrium. The PCN simulation and GLaMM
model give qualitatively similar decreases of Rg,y.

15,16 This
similarity may be reflected in the similarity of the steady-state
value of L/L0 for the three cases (Figure 5, bottom panel).
Nevertheless, we need to accommodate the value of Z0 to attain
further assessment for the two simulations and GLaMM model.
Finally, it should be also noted that the decrease of Rg,y is not
observed in rheo-dielectric experiments16,17 (that detects the
end-to-end fluctuation in the shear gradient direction). Thus,
the simulations/model need to be refined for this point.
In summary, we performed the PCN simulation on start-up

of shear flow to discuss the origin of the stress overshoot of
entangled polymers. Following the recent study by Lu et al.,3

the shear rates were set to be smaller than the reciprocal of the
viscoelastic Rouse time. The orientation and the stress obtained
from our PCN simulation commonly exhibited the overshoot
and satisfied the stress-optical rule. On the other hand, the
stretch slightly and monotonically increases with strain without
showing the overshoot. We thus concluded that the stress
overshoot is attributable to the overshoot in orientation. These
results are fully consistent with the experimental result reported
by Pearson et al.1
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